522,555 research outputs found

    On Link Estimation in Dense RPL Deployments

    Get PDF
    The Internet of Things vision foresees billions of devices to connect the physical world to the digital world. Sensing applications such as structural health monitoring, surveillance or smart buildings employ multi-hop wireless networks with high density to attain sufficient area coverage. Such applications need networking stacks and routing protocols that can scale with network size and density while remaining energy-efficient and lightweight. To this end, the IETF RoLL working group has designed the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL). This paper discusses the problems of link quality estimation and neighbor management policies when it comes to handling high densities. We implement and evaluate different neighbor management policies and link probing techniques in Contiki’s RPL implementation. We report on our experience with a 100-node testbed with average 40-degree density. We show the sensitivity of high density routing with respect to cache sizes and routing metric initialization. Finally, we devise guidelines for design and implementation of density-scalable routing protocols

    Improving energy efficiency in wireless sensor networks through scheduling and routing

    Full text link
    This paper is about the wireless sensor network in environmental monitoring applications. A Wireless Sensor Network consists of many sensor nodes and a base station. The number and type of sensor nodes and the design protocols for any wireless sensor network is application specific. The sensor data in this application may be light intensity, temperature, pressure, humidity and their variations .Clustering and routing are the two areas which are given more attention in this paper.Comment: 7 Pages, 2 Figures and 1 Tabl

    Demo Abstract: Augmenting Reality with IP-based Sensor Networks

    Get PDF
    We demonstrate low-power IP-based sensor networks by showing a system that interacts with the sensor network using a RESTful web service interface. The sensor data is displayed with overlaid 3D graphics on top of a live camera feed, so-called augmented reality. The augmented reality application is built with off-the-shelf components with no sensor network-specific code. The IP-based sensor network runs the Contiki operating system

    A multi-modal event detection system for river and coastal marine monitoring applications

    Get PDF
    Abstract—This work is investigating the use of a multi-modal sensor network where visual sensors such as cameras and satellite imagers, along with context information can be used to complement and enhance the usefulness of a traditional in-situ sensor network in measuring and tracking some feature of a river or coastal location. This paper focuses on our work in relation to the use of an off the shelf camera as part of a multi-modal sensor network for monitoring a river environment. It outlines our results in relation to the estimation of water level using a visual sensor. It also outlines the benefits of a multi-modal sensor network for marine environmental monitoring and how this can lead to a smarter, more efficient sensing network

    A Comprehensive Experimental Comparison of Event Driven and Multi-Threaded Sensor Node Operating Systems

    Get PDF
    The capabilities of a sensor network are strongly influenced by the operating system used on the sensor nodes. In general, two different sensor network operating system types are currently considered: event driven and multi-threaded. It is commonly assumed that event driven operating systems are more suited to sensor networks as they use less memory and processing resources. However, if factors other than resource usage are considered important, a multi-threaded system might be preferred. This paper compares the resource needs of multi-threaded and event driven sensor network operating systems. The resources considered are memory usage and power consumption. Additionally, the event handling capabilities of event driven and multi-threaded operating systems are analyzed and compared. The results presented in this paper show that for a number of application areas a thread-based sensor network operating system is feasible and preferable

    Energy managed reporting for wireless sensor networks

    No full text
    In this paper, we propose a technique to extend the network lifetime of a wireless sensor network, whereby each sensor node decides its individual network involvement based on its own energy resources and the information contained in each packet. The information content is ascertained through a system of rules describing prospective events in the sensed environment, and how important such events are. While the packets deemed most important are propagated by all sensor nodes, low importance packets are handled by only the nodes with high energy reserves. Results obtained from simulations depicting a wireless sensor network used to monitor pump temperature in an industrial environment have shown that a considerable increase in the network lifetime and network connectivity can be obtained. The results also show that when coupled with a form of energy harvesting, our technique can enable perpetual network operatio
    corecore